Diversity of Neural Precursor Cell Types in the Prenatal Macaque Cerebral Cortex Exists Largely within the Astroglial Cell Lineage
نویسندگان
چکیده
The germinal zones of the embryonic macaque neocortex comprise the ventricular zone (VZ) and the subventricular zone (SVZ). The mammalian SVZ is subdivided into an inner SVZ and an outer SVZ, with the outer SVZ being particularly large in primates. The existence of distinct precursor cell types in the neocortical proliferative zones was inferred over 100 years ago and recent evidence supports this concept. Precursor cells exhibiting diverse morphologies, patterns of transcription factor expression, and fate potential have been identified in the neocortical proliferative zones. Neurogenic precursor cells are thought to exhibit characteristics of glial cells, but the existence of neurogenic precursor cells that do not share glial specific properties has also been proposed. Therefore, one question that remains is whether neural precursor cells in the prenatal neocortex belong within the astroglial cell class, as they do in neurogenic regions of the adult neocortex, or instead include a diverse collection of precursor cells belonging to distinct cell classes. We examined the expression of astroglial markers by mitotic precursor cells in the telencephalon of prenatal macaque and human. We show that in the dorsal neocortex all mitotic cells at the surface of the ventricle, and all Pax6+ and Tbr2+ mitotic cells in the proliferative zones, express the astroglial marker GFAP. The majority of mitotic cells undergoing division away from the ventricle express GFAP, and many of the GFAP-negative mitoses express markers of cells derived from the ventral telencephalon or extracortical sites. In contrast, a markedly lower proportion of precursor cells express GFAP in the ganglionic eminence. In conclusion, we propose that the heterogeneity of neural precursor cells in the dorsal cerebral cortex develops within the GFAP+ astroglial cell class.
منابع مشابه
Short-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملUnsupervised lineage-based characterization of primate precursors reveals high proliferative and morphological diversity in the OSVZ.
Generation of the primate cortex is characterized by the diversity of cortical precursors and the complexity of their lineage relationships. Recent studies have reported miscellaneous precursor types based on observer classification of cell biology features including morphology, stemness, and proliferative behavior. Here we use an unsupervised machine learning method for Hidden Markov Trees (HM...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013